Suppression subtractive hybridization identifies genes induced in response to UV-B irradiation in apple skin: isolation of a putative UDP-glucose 4-epimerase.

نویسندگان

  • Yusuke Ban
  • Chikako Honda
  • Hideo Bessho
  • Xiao-Ming Pang
  • Takaya Moriguchi
چکیده

Suppression subtractive hybridization (SSH) successfully identified 11 cDNAs in apple skin with highly induced expression as a result of ultraviolet (UV)-B irradiation. Apart from three putative flavonoid biosynthetic genes, chalcone synthase (CHS; A5C), flavanone-3-hydroxylase (F3H; B5F), and flavonol synthase (FLS; D1F), five clones (A1H, A10E, B11G, D5F, and D11H) were induced by low temperature (17 degrees C) as well, which is also known to induce anthocyanin accumulation in apple skin. Moreover, four clones (A1H, A10E, B11G, and D11H), showing higher expression levels in the skin, accumulated higher anthocyanin concentrations than their counterparts. Of the four clones, only A10E, a putative UDP-glucose 4-epimerase (UGE), was deemed to play an important role in anthocyanin accumulation in apple skin based on the facts that: (i) its transcription level was higher in the deep red cultivar, 'Jonathan', than in the pale red cultivar, 'Tsugaru'; and (ii) it could reversibly catalyse UDP-glucose to UDP-galactose, and the latter molecule is a major sugar donor for cyanidin-glycoside in apple. Therefore, the full-length cDNA of A10E was isolated by rapid amplification of cDNA ends (RACE) and designated as MdUGE1. Further analysis demonstrated that UGE enzymatic activity was positively correlated with anthocyanin accumulation in apple skin. Thus, MdUGE1 isolated by SSH could play an important role in anthocyanin biosynthesis in apple skin in concert with other flavonoid biosynthetic genes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dramatic differences in the binding of UDP-galactose and UDP-glucose to UDP-galactose 4-epimerase from Escherichia coli.

UDP-galactose 4-epimerase catalyzes the interconversion of UDP-galactose and UDP-glucose during normal galactose metabolism. Within recent years the enzyme from Escherichia coli has been studied extensively by both biochemical and X-ray crystallographic techniques. One of several key features in the catalytic mechanism of the enzyme involves the putative rotation of a 4'-ketopyranose intermedia...

متن کامل

Suppression subtractive hybridization identifies high glucose levels as a stimulus for expression of connective tissue growth factor and other genes in human mesangial cells.

Accumulation of mesangial matrix is a pivotal event in the pathophysiology of diabetic nephropathy. The molecular triggers for matrix production are still being defined. Here, suppression subtractive hybridization identified 15 genes differentially induced when primary human mesangial cells are exposed to high glucose (30 mM versus 5 mM) in vitro. These genes included (a) known regulators of me...

متن کامل

Identification of Differentially Expressed Genes Associated with Apple Fruit Ripening and Softening by Suppression Subtractive Hybridization

Apple is one of the most economically important horticultural fruit crops worldwide. It is critical to gain insights into fruit ripening and softening to improve apple fruit quality and extend shelf life. In this study, forward and reverse suppression subtractive hybridization libraries were generated from 'Taishanzaoxia' apple fruits sampled around the ethylene climacteric to isolate ripening-...

متن کامل

Genetic loci for coaggregation receptor polysaccharide biosynthesis in Streptococcus gordonii 38.

The cell wall polysaccharide of Streptococcus gordonii 38 functions as a coaggregation receptor for surface adhesins on other members of the oral biofilm community. The structure of this receptor polysaccharide (RPS) is defined by a heptasaccharide repeat that includes a GalNAcbeta1-->3Gal-containing recognition motif. The same RPS has now been identified from S. gordonii AT, a partially sequen...

متن کامل

Characterization of UDP-glucose dehydrogenase and UDP-glucose pyrophosphorylase mutants of Proteus mirabilis: defectiveness in polymyxin B resistance, swarming, and virulence.

Proteus mirabilis is known to be highly resistant to the action of polymyxin B (PB). However, the mechanism underlying PB resistance is not clear. In this study, we used Tn5 transposon mutagenesis to identify genes that may affect PB resistance in P. mirabilis. Two genes, ugd and galU, which may encode UDP-glucose dehydrogenase (Ugd) and UDP-glucose pyrophosphorylase (GalU), respectively, were ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 58 7  شماره 

صفحات  -

تاریخ انتشار 2007